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ABSTRACT

Accurate segmentation of the left atrium from pre-operative scans is required for diagnosing atrial
fibrillation, treatment planning, intraoperative guidance, and supporting computer-assisted surgical
interventions. While deep learning models are pivotal in medical image segmentation, they often
require extensive manually annotated datasets. However, the emergence of foundation models trained
on larger datasets has helped to reduce this dependency, enhancing generalizability and robustness
through transfer learning capabilities. In this work, we explore the out-of-the-box potential of
DINOvV?2, a self-supervised learning vision transformer-based foundation model trained on natural
images, by evaluating its performance in the left atrium (LA) segmentation task using MRI images.
The challenges include the left atrium’s complex anatomical structures, thin myocardial walls, and
limited annotated data, making it difficult to accurately segment the desired LA structures both prior
to or during the image-guided intervention. We aim to demonstrate DINOv2’s ability to provide
accurate and consistent segmentation in this specific context. We comprehensively evaluated the
performance of DINOv2 in LA segmentation, utilizing end-to-end fine-tuning, and achieved a mean
Dice score of 87.1% and an Intersection over Union (IoU) of 79.2%. Our study included data-
level few-shot learning across different dataset sizes and patient counts, consistently finding that
DINOvV2 outperforms all baseline models. Furthermore, these comparisons suggest that DINOv2
can perform well out-of-the-box to match the above instances in the medical domain and effectively
adapt and generalize to MRI data, even with minimal fine-tuning and limited data. These findings
highlight DINOv2’s potential as a competitive tool for cardiac segmentation, providing accurate
results essential for pre-procedural planning and pre-operative applications. Our study aims to inform
medical researchers about DINOv2’s potential for broader implementation in other medical imaging
modalities.
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1 Introduction

Atrial Fibrillation (AFib), a condition with irregular heart rhythm, is expected to affect 12 million people in the
U.S. by 2030 [[1]]. Accurate segmentation of the left atrium (LA) is important for diagnosing and treating AFib, as
it helps identify the condition and guide interventional procedures like catheter ablation and the Maze procedure,
both aiming to restore normal heart rhythm [2]. Precise LA segmentation provides vital anatomical details, assisting
surgeons in accurately targeting treatment areas, thereby enhancing the effectiveness of interventions and reducing
complications. Additionally, it is essential for post-operative assessments, confirming the procedure’s success, and
monitoring for potential recurrences, ultimately ensuring better patient outcomes. Recent advances in SSL have led to
the development of powerful open-source Al models like DINOv2 [3]], which have shown exceptional capabilities in



zero-shot segmentation of natural images. Yet, significant differences exist between natural and medical image data,
including variations in color, intensity, scaling, and anatomical structures [4]. Medical domain data often present unique
characteristics depending on the imaging modality (CT, X-ray, or MRI). While experts can identify subtle changes and
annotate these images accurately, deep learning models trained on natural images may perform less effectively in this
domain. Given the challenges associated with collecting large annotated datasets comparable in size to those used in
training DINOV?2, it is worthwhile to investigate the potential of leveraging pre-trained DINOv2 models for medical
image analysis, especially for segmentation tasks. This exploration could provide valuable insights into adapting such
foundation models for specialized applications, bridging the gap between general-purpose Al and domain-specific
demands.

The LA is adjacent to other anatomical structures with similar intensities to the blood pool, and its thin myocardial
wall (2-3 mm) challenges imaging, even with high-resolution techniques. The scarcity of annotated data further
complicates the segmentation process. [15]. We specifically chose the LA as a focus area in light of the segmentation
challenges it poses caused by its variable behavior and the scarcity of extensive annotated datasets. Our study explores
the potential of using DINOv2 to obtain a sufficiently accurate segmentation of the LA from MRI images, driven
by the challenges posed by the complex and dynamic anatomical structure of the LA. By evaluating DINOV2 in this
context, we aim to demonstrate its capability to deliver precise and consistent segmentation outcomes, even in complex
and data-constrained scenarios. We compared the performance of DINOv2 with state-of-the-art (SOTA) models such
as Attention UNet (Att. UNet) [6l], UNet [7], and pre-trained ResNet50 backbone with UNet (Res50-UNet) []].
Additionally, we examine the performance of the model on data-level few-shot learning across various data percentages
and patient counts. We chose to compare DINOv2 against Re50-UNet, UNet, and Attention UNet, despite their lower
parameter counts and fully supervised training, to highlight how DINOv2, even with supervised fine-tuning on all data,
excels in complex, data-constrained scenarios and successfully adapts from a natural domain to medical imaging. By
leveraging DINOv2’s capability to focus on relevant features and adapt to new data, we aim to show its effectiveness in
achieving accurate segmentation with minimal supervision.

2 Methodology

2.1 Segmentation with pre-trained DINOv2

DINOV2 [3]], a state-of-the-art framework for SSL released by Meta in April 2023, is available on GitHub ﬂ It is
trained on a diverse corpus of 142M curated natural images using various Vision Transformer (ViT) architectures.
Our implementation utilizes the pre-trained DINOv2 model to extract robust features. It introduces a simple decoder
designed to maintain resolution, in conjunction with the DINOv2’s output processing layers, to segment the LA from
cardiac MRI images. Monochromatic 2D slices of the cardiac LA are converted to 3-channel RGB images and resized
to 448x448 pixels following the architecture requirements. We used the DINOv2 ViT-g/14 (giant) architecture, and its
smaller versions, ViT-b/14 (base) and ViT-1/14 (large), with 1536, 768, and 1024 feature dimensions, respectively. We
use the ViT-g/14 architecture to illustrate the segmentation workflow with DINOv2. Here, an input MRI slice (z;) is
resized to 448x448 pixels and divided into (32x32=)1024 non-overlapping patches of 14x14 pixels each, which are
tokenized into 1536-dimensional tokens. A class token is concatenated with these patch tokens to encapsulate global
semantic information. The DINOv2 model processes these tokens to extract corresponding image embeddings (feature
representations), z, which are reshaped and permuted for convolutional processing. The LinearClassifierToken layer
reshapes these features into a format suitable for convolutional processing, consisting of a single convolutional layer
with a kernel size of 1x 1, adjusting the number of channels and reshaping the feature map to 32x32. Then, the decoder,
consisting of several convolutional and up-sampling layers, processes the reshaped feature maps to produce the final
segmentation map (¥;).

¥; = Decoder(Reshape(DINOv2(z;))) (1

In our experiments, freezing the DINOv2 backbone leverages the robust features learned during pre-training, reducing
computational load and focusing the learning process on the segmentation task. The detailed workflow of fine-tuning
DINOV?2 is illustrated in Fig. [1]

2.2 Dataset Description

The dataset was collected from the LAScarQs 2022 [9] challenge hosted by MICCAI 2022. We evaluated our
approaches to Task 2, focusing on the (semi)-automatic segmentation of the LA cavity from LGE MRI images. The
dataset comprises 130 3D LGE MRI images with varying resolutions from 576x576 to 640x640 pixels and slice counts
of either 88 or 44. All the data were acquired from AFib patients in a clinical setting, and gold standard labels for the
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Figure 1: Detailed pipeline for fine-tuning DINOv2 on left atrium segmentation: utilizing labeled data to generate
accurately predicted masks through transfer learning

LA cavity blood pool were also provided. For our study, we used 70% of the 3D data for training, 10% for validation,
and 20% for testing. We used 2D slices to train all our methods to leverage the detailed spatial information present in
each slice for more effective segmentation.

2.3 Pre- and Post-processing

We ensured consistent pre- and post-processing for all methods (Attention UNet, UNet, Res50-UNet) except DINOv2.
Pre-processing involved padding images to the highest resolution, resizing, cropping, and normalizing. Post-processing
applied morphological operations [[10], specifically opening to remove artifacts and closing to smooth edges and fill
holes, enhancing segmentation accuracy and quality. For fine-tuning DINOvV2, we only performed normalization, with
no additional pre- or post-processing.

2.4 Implementation Details

All techniques were implemented using the Pytorch framework, with experiments conducted on RIT’s Research
Computing Cluster equipped with NVIDIA A100 GPUs [[11]]. For the baseline methods chosen as the gold standard,
input images were resized to 320x 320 and 448x448 for all ViT architectures (ViT-b/14, ViT-1/14, and ViT-g/14). For
the experiments, all models were trained using the Adam optimizer [12]] and BCEwithLogits loss [[13]] with a learning
rate of 0.001 for DINOv2 and 0.0001 for all other methods. The training setup included 75 epochs and a batch size of
24 for all baseline methods except DINOv2, which was trained for 35 epochs with a batch size of 32. The choice of
larger batch size for DINOv?2 is primarily motivated by the distinct characteristics and computational demands of ViT
architectures compared to traditional CNN-based baseline models. We used early stopping to avoid overfitting, and the
best validation checkpoints were selected for testing.

3 Preliminary Results

We conducted experiments using fully supervised fine-tuning and data-level few-shot learning approaches to assess
DINOV2’s adaptability to the LA data. We evaluated our experiments using the dice score and Jaccard index (IoU),
including standard deviations (SD). The methods assessed include Att. UNet, UNet, Res50-UNet, and different versions
of DINOV2. Table[I|shows the quantitative comparison of evaluation metrics after fine-tuning DINOv2 for segmentation
alongside SOTA models Att. UNet, UNet, and Res50-UNet. Our results indicate that higher scores indicate better
performance, which is noted with 7.

The results show that UNet outperformed Att. UNet, achieving a Dice Score of 84.1% compared to 79.2%. The
Res50-UNet trained on ImageNet data further enhanced performance close to DINOv2-base architecture, leveraging
transfer learning from its pre-trained encoder, and achieved a Dice Score of 84.6%. Among the DINOv2 models, the
ViT-base achieved a Dice Score of 84.9%, while ViT-large showed an improvement with a Dice Score of 85.6%. The
ViT-giant version of DINOv2 demonstrated the best performance, with a Dice Score of 87.1%. We also performed
data-level few-shot learning with different patient counts and data sizes, with minimal fine-tuning & testing. As shown



Table 1: Quantitative Comparison of Dice Score (%) and IoU (%) with standard deviation for left atrium segmentation

Methods Dice 1 IoU 1

Attention UNet 79.2+123 72.1 £13.8
UNet 84.1+£83 76.4 +12.8
Pre-trained ResNet50-UNet 84.6 +13.1 76.2 +£12.1
DINOV2 ViT-base 84.9+72 75.5+£6.3
DINOV2 ViT-large 85.6 +5.1 77.0+£6.0
DINOV2 ViT-giant 87.1+4.8 79.2+5.2

in Fig. 2] the left subplot demonstrates that all DINOv2 architectures consistently outperform other methods across
different data sizes, particularly when the data sizes are reduced. The right subplot highlights DINOv2’s superior
performance when trained on data from one, ten, and all patients. It clearly demonstrates its robustness and efficiency,
particularly in few-shot and limited-data scenarios.
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Figure 2: Comparative analysis of data level few-shot learning performance across all methods: Left - evaluation of
performance metrics with varying dataset sizes; Right - evaluation of performance metric with different patient counts

We also provide a qualitative comparison among different DINOv2 architectures and the SOTA Attention UNet, UNet,
and Res50-UNet in Fig. 3] Notably, DINOv2 performs better in delineating the complex structures of the LA with
clearer boundaries, fine anatomical details, and less noise than other traditional CNN-based methods. The qualitative
results show that baseline methods struggle with some edge cases, leading to less precise segmentation than the
foundation model. This visual assessment underscores the advantage of using a foundation model like DINOv2 for
medical image segmentation tasks, providing both better accuracy and consistency, especially in cases with complex
anatomical variations.

4 New Or Breakthrough Work To Be Presented

Considering the challenges (complex anatomical structures, thin wall boundaries, and limited annotated data) associated
with the left atrium segmentation, our study leverages the pre-trained capabilities of DINOv2 to provide a more
accurate analysis of LA segmentation from MRI images. Our work underscores the out-of-the-box potential of the
large foundation model, DINOV2, in efficiently handling complex medical data, even when they are initially trained on
natural domain images. Our preliminary results highlight the robustness, scalability, effectiveness, and generalizability
of these DINOv2 models (base, large, giant) in the medical domain, setting a new benchmark for segmentation tasks
and encouraging further exploration of these open-source foundation models in other medical imaging fields.
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Figure 3: Qualitative comparison of binary segmentation results: Overlaying predictions (green) and ground truth (red)
on input images for left atrium segmentation

5 Conclusion

In this paper, we explored the out-of-the-box potential of DINOv2 as a foundation model for LA segmentation.
We evaluated the robustness and performance of DINOv2 using both end-to-end fine-tuning and few-shot learning
approaches for varying data sizes and patient counts. Our preliminary results indicate that all versions of DINOv2
outperform with a higher dice score, especially excelling with less data. This highlights a trade-off: DINOvV2 utilizes
advanced features to perform well with less data, while the baseline models may require more data to achieve similar
results. The reasonably low standard deviation across the DINOv2 models shows a consistent performance, whereas we
found some traditional models to be subpar, mainly when dealing with limited data. We will include three additional
baseline methods, nnUNet, pre-trained Res152-UNet, and SegNet, and we will conduct a comprehensive statistical &
time complexity analysis of all methods in the upcoming conference proceedings manuscript. We also intend to include
more patient counts for the few-shot learning approach. This study underscores the value of leveraging open-source
foundation models like DINOv2, pre-trained on large, diverse natural image datasets that can learn rich and transferable
features for specific applications such as segmentation of left atrium. The use of these models can lead to enhanced
accuracy and robustness in segmentation tasks, making them valuable choices for broader medical image analysis
applications.
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